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Abstract. We consider the generalized chir@lE D, on S with a U(1) gauge field coupled

with different charges to both chiral components of a fermionic field. Using the adiabatic
approximation we calculate the Berry phase and the correspondigbhnection and curvature

for the vacuum and many particle Fock states. We show that the nonvanishing vacuum Berry
phase is associated with a projective representation of the local gauge symmetry group and
contributes to the effective action of the model.

1. Introduction

Gauge models with anomaly are interesting from different points of view. First, there is
a problem of consistent quantization for these models. Due to anomaly some constraints
change their nature after quantization: instead of being first-class constraints, they turn into
second-class ones. A consistent canonical quantization scheme clearly should take into
account such a change [1-4].

Next is a problem of the relativistic invariance. It is known that in the physical
sector where the local gauge invariance holds the relativistic invariance is broken for some
anomalous models, namely the chiral Schwinger model (CSM) and ¢hitdb, [5-7]. For
both models the Poincare algebra commutation relations breaking term can be constructed
explicitly [7].

In the present paper we address ourselves to another aspect of anomalous models: the
Berry phase and its connection to anomaly. A common topological nature of the Berry
phase, or more generally quantum holonomy, and gauge anomalies was noted in [8, 3]. The
former was shown to be crucial in the Hamiltonian interpretation of anomalies.

We consider a general version of the CSM with @)Ugauge field coupled with different
charges to both chiral components of a fermionic field. The nonanomalous Schwinger model
(SM) where these charges are equal is a special case of the generalized CSM. This will
allow us to see any distinction between the models with and without anomaly.

We suppose that space is a circle of Iength—Lg <x< % so the spacetime manifold
is a cylinder $ ® R.. We work in the temporal gaugd, = 0 and use the system of
units wherec = 1. Only matter fields are quantized, whikg is handled as a classical
background field. Our aim is to calculate the Berry phase and the corresponding U
connection and curvature for the fermionic Fock vacuum as well as for many particle states
constructed over the vacuum and to show explicitly a connection between the nonvanishing
vacuum Berry phase and anomaly.

Our paper is organized as follows. In section 2, we apply first and second quantization
to the matter fields and obtain the second quantized fermionic Hamiltonian. We define
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the Fock vacuum and construct many particle Fock states over the vacuum. We use a
particle-hole interpretation for these states.

In section 3, we first derive a general formula for the Berry phase and then calculate
it for the vacuum and many particle states. We show that for all Fock states the Berry
phase vanishes in the case of models without anomaly. We discuss a connection between
the nonvanishing vacuum Berry phase, anomaly and effective action of the model.

Our conclusions are in section 4.

2. Quantization of matter fields

The Lagrangian density of the generalized CSM is

L=—3F,F" + Yy 8,y + esUay Yo Ay + e Yoy Y A, @)
where

Fuo = 9,A, — 8,4, (u,v)=0,1 yo =01
J/lz —iO‘z yoylz )/5:0'3

only o; (i =1, 3) are Pauli matrices. The fielt is 2-component Dirac spinoty = yfy°
andyy = ;(1£ 9y,
In the temporal gaugd, = 0, the Hamiltonian density is
H=3E"+H, +H_ @)
with E momentum canonically conjugate &, and

He = Yidys = FYL(oy + ex A s

On the circle boundary conditions for the fields must be specified. We impose the
periodic ones

n(5)=()
(=)

The Lagrangian and Hamiltonian densities are invariant under local time-independent gauge
transformations

A1 — A1+ 012
i
Y — exp{ﬁeik} (/2

A being a gauge function.

For arbitrary e,,e_, the gauge transformations do not respect the boundary
conditions (3). The gauge transformations compatible with the boundary conditions must
be either of the form

A L = L +ﬁzn €z
2) ="\ 72 er "

with e, # 0 and

“_N Nez (4)
€t
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or of the form

A L =\ L —i—i_zzn e Z
2) = 2 e ' "
with e_ £ 0 and

Zi -N Nez. ()

Equations (4) and (5) imply a quantization condition for the charges. Without loss of
generality, we choose (4). F&F =1, e_ = ¢, and we have the standard SM. Rgr= 0,
we get the model in which only the positive chirality component of the Dirac field is coupled
to the gauge field.

We see that the gauge transformations under consideration are divided into topological
classes characterized by the integer If A(%) = A(—%), then the gauge transformation
is topologically trivial and belongs to the = 0 class. Ifn # 0 it is nontrivial and has
winding numbenm.

The eigenfunctions and the eigenvalues of the first quantized fermionic Hamiltonians
are

di(x|n; £) = e, +(x|n; +)

where

1 i * i
':l: - — = d A —=&n
(x|n; £) ﬁexp{hei /_L/Z z A1(z) + 7E .ix}

2 E eibL
gpy = — | nh — .
= L 2

We see that the spectrum of the eigenvalues depends on the zero mode of the gauge field:

1 L/2
b= — dx A1(x, t).
L/
For "*”L = integer, the spectrum contains the zero energy level.b Ascreases from 0

to hi”L, the energies of, . decrease by 2, while the energies of—s, _) increase by
EZ”N Some of energy levels change sign. However, the spectrum at the configurations
b=0andb = hﬂ is the same, namely, the integers, as it must be since these gauge-field
configurations are gauge-equivalent. In what follows, we will use separately the integer and
fractional parts ofz’F, denoting them as’r] and e*”"} correspondingly.

Now we introduce the second quantized right- handed and left-handed Dirac fields. For
the moment, we will assume thdt do not have zero eigenvalues. At time- 0, in terms
of the eigenfunctions of the first quantized fermionic Hamiltonians the second quantized
(¢-function regulated) fields have the expansion [9]

YL =) an(xln; +)hey |7

nez 6
V) =) balxln; =)k, |2 ©

nez
Here A is an arbitrary constant with dimension of length which is necessary to mgke

dimensionless, Whilez,,,a,i and bn,bl are correspondingly right-handed and left-handed
fermionic annihilation and creation operators which fulfil the commutation relations

[Cln, Ll);l]+ = [brm bnT]-‘r = Sm,n-
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' ’ Energy J Energy

Empty level
— Filled level
————— Fermi surface

Figure 1. Schematic representation of the vacuum stat@) fositive chirality sector, k)
negative chirality sector.

For ¥{ (x), the equal time anticommutators are

[V, YL Oy = ¢as, x, ) (7)
with all other anticommutators vanishing, where

(s, x, ) = Y (xlns &) (n; y) [hey 2~

nez
s is large and positive. In the limit, when the regulator is removed, s.e= O,
Z+(s = 0,x,y) =8(x — y) and equation (7) takes the standard form.
The vacuum state of the second quantized fermionic Hamiltonian
vac A) = |vag A; +) ® [vag A; —)

is defined such that all negative energy levels are filled and the others are empty (see
figure 1):

SR
a,lvag A; +) =0 forn > | 2
| 2nh | ®)
. _€+bL_
a'lvag A; +) =0 forn < —
| 2h |
and
o L7
byvac A: —) =0  forn< | o
| 2h |
Ce bLT ©)
bilvag A; —) =0 forn > | ==
" ’ | 27 |

In other words, in the positive chirality vacuum all the levels with energy lower than

E[estty g 4 and in the negative chirality one all the levels with energy lower maa?%]ﬁ)

are filled:

ep bl
(%]

vac A: +) = [] a},10:+)
n=—0oo
400
vac A:-) =[] bli0:-)

e_bL
n=[ Zvl;{ ]+l

where|0) = |0, +) ® |0, —) is the state of ‘nothing’ with all the energy levels empty.
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The Fermi surfaces which are defined to lie halfway between the highest filled and
lowest empty levels are

27 (1 etrbl
F = :bhi - P .
= L \27 | 2

Fore, =e_, 85_ = —¢F,
Next we define the fermionic parts of the second-quantized Hamiltonian as
R L/2 R L/2 ; ;
L= [ Ao =1 / de (WP duwy — vidivl).
—L/2 —L/2
Substituting (6) into this expression, we obtain
N N . LY
Hi =Hox+ Fesb: pL(0): +ﬁﬂ(gi) (10)
where double dots indicate normal ordering with respedvaa, A),
N 2 1 s —s
Fo.. =hL!£no{ Z kalag|her | — Z kagal|rer 4| }
k>[5 k<[Zr
N _2r |
— i T -5 __ T —s
o =R ‘!@O{k ;L]kbkbk|xsk,_| k [Z;L]kbkbk|kek,_| }
>[ = <[ =

2l 27l

are free fermionic Hamiltonians, and

Lp+(0) = 1'_%{ Z alak|)\sk’+|’s— Z akaZ|)\3k,+|S}

k>[40 k<[ S0

L p-(0) = Iim{ > biblre T = > bkb,mek,ré‘}
s—0 e bl e bL
k<[] k>[ 7]

are charge operators for the positive and negative chirality fermion fields respectively. The
fermion momentum operators constructed analogously are

Py = Ho-.

The operators Hy :, : p+(0) : and P, are well defined when acting on finitely excited
states which have only a finite humber of excitations relative to the Fock vacuum.
For the vacuum state,

Hy :|vag A; £) =: p.(0) : [vag A; +) = 0.

Due to the normal ordering, the energy of the vacuum which is at the same time the ground
state of the fermionic Hamiltonians turns out to be equal to zero (we neglect an infinite
energy of the filled levels below the Fermi surfaeé$. The vacuum state can be considered
also as a state of the zero charge.

Any other state of the same charge will have some of the levels atjog€ ) occupied
and some levels belomﬁ (eF) unoccupied. It is convenient to use the vacuum gisig A)
as a reference, describing the removal of a particle of positive (negative) chirality from one
of the levels below’, (¢F) as the creation of a ‘hole’ [10, 11]. Particles in the levels above
&" (¢F) are still called particles. If a particle of positive (negative) chirality is excited from
the levelm below the Fermi surface to the lewelabove the Fermi surface, then we say that
a hole of positive chirality with energy—e¢,, +) and momentun{—ﬁ%m) (or of negative
chirality with energys,, - and momentumb%m) has been created as well as the positive
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chirality particle with energy, + and momentunh%n (or the negative chirality one with

energy(—e, ) and momentuni— % n)). The operatora(k < [$2]) andbi (k > [$2F])
behave like creation operators for the positive and negative chirality holes correspondingly.
In the charge operator a hole counts-as, so that, for example, any state with one
particle and one hole as well as the vacuum state has vanishing charge.
The number of particles and holes of positive and negative chirality outside the vacuum

state is given by the operators

N, = lim f e, o™
+ HO{kZ aja+ Y }| ot

> %] k<157
N_ = lim bib beb! Ve, |7
im{ 3 vl 3 o
k<[ %] k>[%7]

which count both particle and hole asl.
Excited states are constructed by operating creation operators on the vacuum. We start
with 1-particle states. Let us define the stdigsA; £) as follows

, (e LT
al lvag A; +) for m > i —
2mh
m; A; +) = - z
an|vag A; +) form < | &2
" ’ | 27h |
and
. [e_bL
bl |lvag A; — form < —
A nlVas 4: =) S| 2nh
m; A; —) =
b,lvag A; —) for e-bL
" s — m > —
| 2rh |

The stategm; A; &) are orthonormalized,
(m; A; £ln, A; £) = 8
and fulfil the completeness relation
> im: As ) (m; A k| =1

mezZ

It is easily checked that
He D im; A &) = gk lm; A; £)

A 27
Pylm; A; &) =hTMIm; A; %)

b
pe(0): m: Ai ) = Hlm: As4) form > | S
2rh

and
CHy s my Ay £) = —g m; As 1)

R _2
mmmﬂ=w{meﬂ

eibL
2rh |’

c0+£(0) 1 |m; A £) = Flm; A; £) form < [ —
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‘ ‘ Energy

Figure 2. Schematic representation of 1-particle stateg:a state with one particleb] a state
with one hole. Only positive chirality sector is shown.

We see thatm; A; +) is a state with one particle of positive chirality with eneegy. and
momentumh%”m form > [gzﬁtbﬁL] or a state with one hole of the same chirality with energy

(—&m+) and momentum(—a2"m) for m < [%2F]. The negative chirality staten; A; —)
is a state with one particle with energ@y-¢,, ) and momentun{—ﬁ%m) for m < [EZ;T”FL
or a state with one hole with energy, - and momentunﬁz%m for m > [eijfﬁ" . In any
case,

Ni|m; A; £) = |m; A; £)

that is why|m; A; ) are called 1-particle states (see figure 2).
By applying n creation operators to the vacuum stafeac A; £) we can also get
n-particle states

[my; mo; ... 5my,; A; £) (my<mp <--- <my)
which are orthonormalized:
(my;ma;...smy; Ay £lma; ma; .My Ay ) = SpmySmmy - - - Om,m, -

The completeness relation is written in the following form

1
o Z Z Imy;mo;...smy; As £)(masmy; .. my; Ay £ =10 (11)

" mezZ m,ez

Here the range ofi; (i = 1, n) is not restricted by the conditioin, < my < --- < m,,),
duplication of states being taken care of by th@!land the normalization. The ‘1’ on the
right-hand side of equation (11) means the unit operator on the spacpaticle states.

The casen = 0 corresponds to the zero-particle states. They form a one-dimensional
space, all of whose elements are proportional to the vacuum state.

The multiparticle Hilbert space is a direct sum of an infinite sequence of-freticle
Hilbert spaces. The states of different numbers of particles are defined to be orthogonal to
each other.

The completeness relation in the multiparticle Hilbert space has the form

o0

1
Z; D Imumas . m As ) mama; L my; A £ =1 (12)
n=0

" mi,mz,..meZ

where ‘1’ on the right-hand side means the unit operator on the whole multiparticle space.
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For n-particle states,
N n
HLtmasmas s A ) =) ey 4 SIONER, 2)|mas ma; s A; £)
k=1
and

n
Dpa(0) ¢ masmg; sy As ) =Y SiIGNE, +)|mas mas . my; A; £).
k=1

3. Calculation of Berry phases

In the adiabatic approach [12-14], the dynamical variables are divided into two sets, one
which we call fast variables and the other which we call slow variables. In our case, we
treat the fermions as fast variables and the gauge fields as slow variables.

Let A be a manifold of all static gauge field configuratioAs(x). On A' a time-
dependent gauge field; (x, r) corresponds to a path and a periodic gauge field to a closed
loop.

We consider the fermionic part of the second-quantized Hamiltonibla :=: A :

+ : A_ : which depends om through the background gauge fied and so changes very
slowly with time. We consider next the periodic gauge fidlgdx, 1)(0 <t < T). After a
time, T, the periodic field,A;(x, t), returns to its original valueA;(x,0) = A1(x, T), SO
that : Ay : (0) =: Hy : (T).

At each instant we define eigenstates folt, : (1) by

THa (OIF, A); ) = er 2 (DIF, A(); £).
The statgF = 0, A(r); +) = |vac A(r); &) is a ground state of M @ (1),
“Hy 1 (1)|vag A(r); +) = 0.

The Fock statesF, A(r)) = |F, A(t); +) ® |F, A(t); —) depend on¢ only through their
implicit dependence or;. They are assumed to be orthonormalized,

(F, A(DIF, A(t)) = Sk

and nondegenerate.

The time evolution of the wavefunction of our system (fermions in a background gauge
field) is clearly governed by the Schrodinger equation:

mw = He: (V).
at

For eachr, this wavefunction can be expanded in terms of the ‘instantaneous’ eigenstates
IF, A(D)).

Let us choose/r(0) = |F, A(0)), i.e. the system is initially described by the eigenstate
|F, A(0)). According to the adiabatic approximation, if at= 0 our system starts in a
stationary statéF, A(0)) of : He : (0), then it will remain, at any other instant of timein
the corresponding eigenstdfe A(r)) of the instantaneous HamiltoniatHi : (7). In other
words, in the adiabatic approximation transitions to other eigenstates are neglected.

Thus, at some time later our system will be described up to a phase by the same Fock
state|F, A(r)):

Ve(r) = Ce()|F, A(®))
where G(z) is yet an undetermined phase.
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To find the phase, we insett=(¢) into the Schrodinger equation:
RCr(t) = —iCr(1) (er 1 (1) + €7, (1) — hCF(t)<F A1) ‘F A(t)>
Solving this equation, we obtain

Cr(1) =exp{ - hl_ /O A (er+ (1) + er.- (1) — /O < F.AG )>}

Fort =T, |F, A(T)) = |F, A(0)) (the instantaneous elgenfunctlons are chosen to be periodic
in time) and

Yr(T) = explie” + ive =™ ¥e(0)

where
dyn 1 T
e =—r f dr (er 1 (1) + er— (1))
0
while
y'Eerry: Eirry+ Berry
L/2 . (13)
Berry .
= [ d dx A (x,t)<F,A(t); i‘l‘ F,A(t);j:>
Yrx fo —Ly2 ' SA1(x, 1)
is Berry’'s phase [13].
If we define the W1) connections
D =(FAQ@); £|i——|F, AQ@); £+ 14
Ar+(x,1) < ) ‘(SAl(x,t)’ ) > (14)

then

Berry r L/2 H
Yrx = / dr dx A1(x, ) A 1+ (x, 1).
0 -L/2
We see that upon parallel transport around a closed loagotie Fock stateg, A(r); +)
acquire an additional phase which is integrated exponentiallof (x, ). Whereas the
dynamical phaseavgy” provides information about the duration of the evolution, the Berry’'s
phase reflects the nontrivial holonomy of the Fock statesién

However, a direct computation of the diagonal matrix elementg of; in (13) requires
a globally single-valued basis for the eigenstgt€sA(¢); +) which is not available. The
connections in (14) can be defined only locally @A, in regions where fg%] is fixed.

The values ofA; in regions of different IQ%L] are connected by topologically nontrivial

gauge transformations. Iﬁz*[f—ﬁL] changes, then there is a nontrivial spectral flow, i.e. some
energy levels of the first quantized fermionic Hamiltonians cross zero and change sign.
This means that the definition of the Fock vacuum of the second quantized fermionic
Hamiltonian changes (see equations (8) and (9) and figure 3). Since the creation and
annihilation operators’, a (andb', b) are continuous functionals of1(x), the definition
of all excited Fock state$F, A(¢)) is also discontinuous. The connectiopk . are
not therefore well defined globally. Their global characterization necessiates the usual
introduction of transition functions.

Furthermore Ar .. are not invariant undet-dependent redefinitions of the phases of the
Fock states:|F, A(¢); ) — exp{—ix+[A]}|F, A(¢); £), and transform like a ) vector
potential

Sx+[A] .

A A
F+ > AF+ T A,
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' [ ' ‘ Energy
n=2
n=2 ﬂ=;
n=1 n=2 n=
€Tl TTTETI Ty
— -1 — n=o0 R
—_— n=-2 — n=-1 -
J— — n=-2 J—
@ (b) ©

Figure 3. Schematic representation of the vacuum state at different valu{égéﬂ: (a)

[“;ﬁbh"} =0, b) [“g”bh"} =1, () [%] = —1. Only the positive chirality sector is shown.

erry

For these reasons, to calculax,g it is more convenient to compute first the1y

curvature tensors
FE(x r)=LA ( z)—LA (x,1) (15)
R Y T E o) MR Y/ PCO) Mk

and then deducelg ..

3.1. n-particle stateqn > 3)

For n-particle state§mq; my; ...;m,; A; +) (m1 < my < --- < my,), the U1) curvature
tensors are
1
‘Fn:i:l,mz ..... m,,(x’y’t) :IZE Z
k=0 my,ma,..., myez
X ; S AR | —————— | Mmoo my A
{<m1 mo m, ‘SAl(x,t) mi; ma my >
X ml;mz;...;mk;A;:i:‘ mq; mo; ... my; A; :i:>—(x <—>y)}
< 3A1(y, 1)
where the completeness condition (12) is inserted.
Since
SHy:| -
my; ma; ...; My Ay £ | ————|mq;mp; ..., my; Ay =
SA1(x, 1)
k n
- { S e+ SiGNE, £) — zem,,isigmem,,i)}
i=1 i=1

my;mp; ... my; A ﬂ:>

)
X{mqy;mo;...;my A £|———
8A1(x,1)

and : A, : are quadratic in the positive and negative chirality creation and annihilation
operators, the matrix elementsiy; mo; .. .; my,; A; il%|m1; mo; ... mg; A; £) and

so the corresponding curvature tensgis and Berry phaseg "
for all values ofm;(i = 1, n) for n > 3.

..... My

my+ Vanish
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3.2. 2-particle states

For 2-particle statesmq; mo; A; &) (my < my), only the vacuum state survives in the
completeness condition inserted so that the curvature teti§gys take the form

1
fn:/‘l:m(ayvt)zi - .
vz EZ (Sml,:l:SIQr(gml,:l:) + gmz,:tSIQr(gmz,:t))z
THy
X mq;mo; A; = |————|vag A; =
3A1(y, 1)
vag A; + Hy A+ ) —( )
X ———|mq; mo; A; —(x < .
SAL(x. 1) 1; m2 y
With : A, : (1) given by (10),F mlmz are evaluated as
eirbl
0 for my, mo > |: Zj[nﬁ :|
€ib|_
andmq, < —
. ez [ 21h ]
]:mlmz = 2
es 1

2n2h (my —mq)?
X Sin 27T( )( ) for < exbl exbl
L nmoy mi)(xX y mi1 x Zﬂﬁ , Mo > Zﬂﬁ

i.e. the curvatures are nonvanishing only for states with one particle and one hole.
The corresponding connections are easily deduced as

L/2
m1m2(x 1) = _/L/ dy mlmg('x v, HA1(y, 1).
The Berry phases become
Berr L/2 L2
Voot = / dt/ dX/ dy A1(x, 1) F,,,, (X, v, DAL(Y, D).
L/2 —L/2

If we introduce the Fourier expansion for the gauge field
i 21
A, 1) =b(t) + Y €T ()

peZ
p#0

then in terms of the gauge field Fourier components the Berry phases take the form
Berry e:2t|_2 1
lemz + — 871_2%2 (mz _ m1)2
for my <[5 ].ma > [S5], vanishing formy,mp, > [%5F] and my, my < |
Therefore, a paraIIeI transportation of the staies; m»; A; :l:) Wlth two particles or two
holes around a closed loop {@,, «_,)-space(p > 0) yields back the same states, while
the states with one particle and one hole are multiplied by the ph{fﬁ%r
For the Schwinger model whe¥i = 1 ande, = ¢_ as well as for axial electrodynamics

whenN = —1 ande, = —e_, the nonvanishing Berry phases for the positive and negative
chirality 2-particle states are opposite in sign,

/ dr |(Olm2,m10lm17m2 - Olmlfmzamzfml)

exbl erbl

eibL]

Berry Berry
Ymima,+ = ~Vmimp,—
so that for the statel#ny; mo; A) = |mq; mo; A; +) ® |m1; mo; A; —) the total Berry phase

is zero.
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3.3. 1-particle states

For 1-particle stategn; A; ), the (1) curvature tensors are

1 1
.F,,jf(x, y, 1) =i — - _
ﬁgz 2 (gm,+SiQN(em, +) — Em =SIGN(E +))?
m#m
S Hi o
x {{m; A; m; A; £
§A1(y, 1)
o S |:|:t
X (m; A; £ m;A;£)—(x «<—y)
§A1(x, 1)
By a direct calculation we easily obtain
o0
fi [eEtt] = Z ‘7:0:‘,:7
m>[ 5 B L
m=m—[ 5]
+ _ +
]:mg[%:;‘] - Z ]:OW

=[]~ m 41

Where]-"oim are curvature tensors for the 2-particle stdesn; A; +) (m > 0).
The Berry phases acquired by the stadiesA; 4) by their parallel transportation around
a closed loop inw,, a_,)-space(p > 0) are

Berry exblL N - Berry
v (m= 5 2= 2 Yows

mon-l 5]
(o]
Berry exhl Berry
A G )= 2 A
=L —m+1

2nh

WherEyOBme;Y are phases acquired by the sta@sn; A; £+) by the same transportation.

For theN = +1 models, the total 1-particle curvature tenggr = ¥, + F,, and total
Berry phasey 8™ = 5 2™ 1 %™ vanish.

3.4. vacuum states

For the vacuum case, only 2-particle states contribute to the sum of the completeness
condition, so the vacuum curvature tensors are
]'-\;gc(%y,f)z_% Z fmilmz('x’yvt)°
my;maeZ
Taking the sums, we obtain
2

e 1 1
Foac= iﬁ 2 (26(x -y - E(x - y)) : (16)

The total vacuum curvature tensor

_ e (1 1
Fvac = f\gc+fvac: a- NZ)ZTL’%Z <26()C —-y) - E(x - y))

vanishes forN = +1.
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The corresponding (1) connection is deduced as

1 L/2
Avac(xvt):_E/ dy Frac(x, y, 1) A1(y, 1)
L2

so the total vacuum Berry phase is

T L/2 L/2 )
vaa?:rrYZ _%/ dt/ dx/ dy Al(-xvl)]:VaC(xs )’at)Al()’,l‘)
0 —L/2 —L/2

For N= 0 and in the limit L— oo, when the second term in (16) may be neglected, the
U(2) curvature tensor coincides with that obtained in [5, 15], while the Berry phase becomes

B 1 T [e'e]
yva%rry = ﬁ/(; dt/ dx Lnonlocalx, )
—o0

where

&
8mw2h
is a nonlocal part of the effective Lagrange density of the CSM [16]. The effective Lagrange
density is a sum of the ordinary Lagrange density of the CSM and the nonlocdl jaakta+
As shown in [16], the effective Lagrange density is equivalent to the ordinary one in the sense
that the corresponding preliminary Hamiltonians coincide on the constrained submanifold
G ~ 0. This equivalence is valid at the quantum level, too. If we start from the effective
Lagrange density and apply appropriately the Dirac quantization procedure, then we come to
a quantum theory which is exactly the quantum theory obtained from the ordinary Lagrange
density. We therefore obtain that the Berry phase is an action and that the CSM can be
defined equivalently by both the effective action with the Berry phase included and the
ordinary one without the Berry phase.

In terms of the gauge field Fourier components, the connectignis rewritten as

Lhnonlocalx, 1) = — / dy Al(xv He(x — y)A1(y, 1)

<vac; A() % vac A(z)> =0
vag A vag A(t) ) = A =+(1-N? AL 1
< ag A(r) m ac (f)> = Avac(p, 1) = £(1 - )871252 ;a:Fp

so the nonvanishing vacuum curvature is

d d 2?1
fvac(P) = WAV&H‘ - aAvaq— =(1- NZ) 4;252;.
-pP P

The total vacuum Berry phase becomes

T
yoemy — / dr vaac(p)iapd_p.
0 p>0

For theN # +1 models where the local gauge symmetry is known to be realized projectively
[4], the vacuum Berry phase is nonzero. RPér= £1 when the representation is unitary,
the curvatureF,,c(p) and the vacuum Berry phase vanish.

The projective representation of the local gauge symmetry is responsible for anomaly.
In the full quantized theory of the CSM when the gauge fields are also quantized the physical
states respond to gauge transformations from the zero topological class with a phase [4].
This phase contributes to the commutator of the Gauss law generators by a Schwinger term
and produces therefore an anomaly.
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A connection of the nonvanishing vacuum Berry phase to the projective representation
can be shown in a more direct way. Under the topologically trivial gauge transformations,
the gauge field Fourier components, o, transform as follows

ap _T) op — |PT—(P)
T .
a_, = a_, —Ipti(p)

wheret,(p) are smooth gauge parameters.
The nonlocal Lagrangian

L/2
Lnonloca(t) = / dx Lnoniocalx, ) =1 Z fvac(l’)iapd—p
-L/2 p>0

changes as

T _d
Lnonlocat) = Lnonlocalt) — 27h aal(A; T)
where

1
(A7) == ) pPFadp) @t —apTy)
p>0

is just 1-cocycle occurring in the projective representation of the gauge group. This
examplifies a connection between the nonvanishing vacuum Berry phase and the fact that
the local gauge symmetry is realized projectively.

4. Conclusions

Let us summarize.

(i) We have calculated explicitly the Berry phase and the correspondihgddnnection
and curvature for the fermionic vacuum and many particle Fock states. FaV thet1
models, we obtain that the Berry phase is nonzero for the vacuum, 1- and 2-particle states
with one particle and one hole. For all other many particle states the Berry phase vanishes.
This is caused by the form of the second quantized fermionic Hamiltonian which is quadratic
in the positive and negative chirality creation and annihilation operators.

(ii) For the N = +1 models without anomaly, i.e. for the SM and axial electrodynamics,
the Berry phases acquired by the negative and positive chirality parts of the Fock states are
opposite in sign and cancel each other, so that the total Berry phase for all Fock states is
zero.

(iii) A connection between the Berry phase and anomaly becomes more explicit for the
vacuum state. We have shown that for our model the vacuum Berry phase contributes to
the effective action, being that additional part of the effective action which differs it from
the ordinary one. Under the topologically trivial gauge transformations the corresponding
addition in the effective Lagrangian changes by a total time derivative of the gauge group
1-cocycle occurring in the projective representation. This demonstrates an interrelation
between the Berry phase, anomaly and effective action.
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